Skip to content

기글하드웨어기글하드웨어

컴퓨터 / 하드웨어 : 컴퓨터와 하드웨어, 주변기기에 관련된 이야기, 소식, 테스트, 정보를 올리는 게시판입니다.

Extra Form
참고/링크 https://pc.watch.impress.co.jp/docs/colu...65543.html

EUV 노광이 10년 후의 미세화까지 견인

 

1.jpg

 

최첨단 반도체의 고밀도 트렌드와 그 예측. 왼쪽의 그래프는 DRAM의 저장 밀도입니다. 2020년대에 연평균 5%~10%의 비율로 고밀도화가 이어집니다. 오른쪽 그래프는 반도체 로직 트랜지스터 밀도로 2020년대에도 연평균 10%~28%의 비율로 밀도를 높여 나갑니다. EUV 노광 장치 업체인 ASML이 2018년 11월에 애널리스트 설명회에서 발표한 슬라이드에서 발췌.


최첨단 반도체 로직과 DRAM 등의 미세화와 고밀도를 견인할 차세대 EUV(Extreme Ultra-Violet) 노광 기술이 본격적으로 개발 중입니다. 개발이 순조롭게 진행되면 2020년대 후반에 최첨단 반도체 양산을 맡을 겁니다. 

 

EUV 노광 기술은 7nm 세대의 반도체 로직부터 양산에 도입됐습니다. 그리고 앞으로의 5nm 세대와 3nm 세대의 반도체 로직까지는 7nm 세대 양산에 적용된 현 세대의 EUV 노광 기술을 개선해 미세화를 계속 해나갑니다. 현 세대의 EUV 노광 기술은 3nm 세대까지가 한계입니다. 3nm에서 2nm, 그 다음의 14nm는 차세대 EUV 노광 기술을 씁니다.

 

2.jpg

 

최첨단 반도체 생산을 뒷받침하는 리소그래피(노광) 기술의 동향과 앞으로 전망. 왼쪽 그래프는 주요 반도체 제품과 리소그래피 기술의 트랜드입니다. 마이크로 프로세서와 로직, DRAM은 2020년 이후에도 미세화가 계속됩니다. 지금까지는 ArF 액침(ArFi) 노출과 멀티 패터닝의 조합으로 미세화를 진행해 왔습니다(청색 실선). 앞으로는 EUV 노광(황색 실선)으로 미세화를 진행합니다. EUV 노광에서도 멀티 패터닝을 결합합니다. 2020년대 후반에는 차세대 EUV 노광(HiNA, 노란색 실선)을 도입합니다. 오른쪽 그래프는 로직과 DRAM의 양산의 중첩 오차를 표시한 것입니다. 7nm에선 중첩 오차가 3.5nm, 5nm는 2.5nm, 3nm는 2.0nm로 줄여 나갑니다. 앞으로 DRAM보다 로직이 오버레이 오차에 대한 요구가 높아집니다.

 

3.jpg

 

주요 반도체 제품의 스케일링(저장 용량이나 트랜지스터의 밀도 향상) 로드맵.

 


차세대 EUV 노광에서는 개구율이 1.67배 증가

 

기존 세대의 EUV 노광 기술과 차세대의 EUV 노광 기술은 광학계 개구율(NA)가 다릅니다. 현 세대의 NA는 0.33입니다. 차세대 기술의 NA는 0.55로 높습니다. 그래서 차세대 EUV 노광 기술을 High-NA나 HiNA라고 부르곤 합니다.

 

반도체 노광 기술의 해상도(하프 피치, R)는 노광 파장(λ)에 비례하고, 광학계의 NA에 반비례합니다. NA를 높이면 하프 피치가 짧아집니다. 즉, 미세화가 진행됩니다. High-NA 0.55의 개구율은 현 세대의 0.33에 비해 1.67배 높습니다. 하프 피치는 0.6배로 짧아집니다. 이 차이는 매우 큽니다. 

 

4.jpg

 

이 차이가 어느 정도인지 자세히 봅시다. 예를 들어 5nm/3nm의 기술 노드에 해당하는 12nm 하프 피치를 실현하기 위해서현 세대의 EUV 노광 기술은 멀티 패터닝(다중 노출) 기술, 구체적으로는 트리플 패터닝(LELELE) 기술이 필요합니다. 트리플 패터닝은 싱글 패터닝에 비해 처리량이 몹시 낮습니다. 따라서 패턴 가공에 필요한 비용이 싱글 패터닝보다 크게 늘어납니다.

 

5.jpg

 

차세대 High-NA EUV 노광 기술은 단일 노출로 하프 피치 12nm의 패턴을 실현합니다. 그럼 4배 정도 차이가 나는 것이죠. 1층의 패턴 가공에 필요한 제조 비용에 비해 NA 0.55인 싱글 패터닝은 NA 0.33 트리플 패터닝보다 제조 비용이 1/2.5 정도로 줄어듭니다. 더 자세히 말하면 ArF 액침 트리플 패터닝(ArFi LE3)과 NA 0.33의 EUV 싱글 패터닝(LE)이 거의 비슷합니다. EUV 노광이 ArF 액침 노광보다 기본적인 비용이 더 비쌉니다. 같은 EUV끼리 비교하면 NA 0.33인 EUV의 더블 패터닝(LE2)보다 NA 0.55의 EUV 싱글 패터닝(LE)가 훨씬 저렴합니다. 

 


차세대 EUV 노광 장치의 시험 제작기는 2021년 말까지 출하

 

6.jpg


차세대 High-NA EUV 노광을 실현할 노광 장치(스캐너)의 개발을 주도하는 유일한 EUV 노광 장치 제조사는 ASML입니다. ASML은 NA가 0.55인 EUV 노광 장치의 첫 프로토타입을 2021년 말까지 출시할 예정입니다. 이 프로토타입은 2018년 1분기에 3곳의 고객에게서 4대의 주문을 받았습니다. 이 3곳의 고객에는 연구 개발 기관인 imec, 세계 최대의 파운드리인 TSMC가 포함됐으리라 보입니다. 또 imec는 ASML이 개발한 차세대 EUV 노광 기술의 파트너로 imec에서 실제 패턴을 테스트합니다. 양산용 시스템의 출시는 2024년. 이 시스템은 2018년 1분기 시점에 8대가 예약됐습니다. 초기 노드는 3nm.

 

 

High-NA로 광학계가 크고 무거워짐 


EUV 노광 장치의 NA를 0.33에서 0.55로 높이려면 우선 광학계부터 바꿔야 합니다. 광학계는 광원부터 마스크(레티클)에 이르는 전반 부분인 조명 광학계, 마스크로 반사 패턴을 웨이퍼에 전사하는 후반 부분인 투영 광학계로 나뉩니다.

 

7.jpg

 

EUV 노광 장치의 구조입니다. 왼쪽의 광원에서 나온 EUV 광선이 조명 광학계(illuminator)를 거쳐 중앙의 마스크에 도달합니다. 마스크에서 반사된 패턴은 투영 광학계 (projection optics)를 거쳐 오른쪽 하단의 웨이퍼에 전사됩니다. 

 

마스크 패턴은 축소 웨이퍼에 투영됩니다. 그래서 마스크의 NA는 웨이퍼의 NA/축소 비율(4배)가 되면서 원본보다 매우 작아집니다. 따라서 조명 광학계는 그리 크게 바뀌진 않을 듯 합니다(광원의 출력 향상에 의한 변화는 제외).

 

이에 비해 투영 광학계는 큰 변화가 필요합니다. 단순히 정리하면 광학계의 크기와 반사 렌즈가 커집니다. 가장 큰 반사 렌즈는 웨이퍼에 직접 빛을 보내는 대물 렌즈로, 렌즈 본체의 무게는 수백 kg, 틀을 포함하면 총 무게는 1t에 달합니다. 

 

광학계는 예전부터 반도체 제조용 정밀 광학 부품 업체인 칼 자이스 SMT가 EUV 스캐너의 공동 개발 파트너로 참여했습니다. NA 0.55의 광학계도 이곳에서 개발을 담당합니다. 

 

8.jpg

 

투영 광학계의 크기 변화. 왼쪽은 NA 0.25, 중앙은 NA 0.33, 오른족은 NA 0.55의 투영 광학게입니다. 반사경의 수는 모두 6장입니다. NA를 높이면서 반사경의 크기가 커지면서 광로가 길어집니다. 광학계 전체의 크기는 길고, 넓고, 무거워집니다.

 

9.jpg

 

광학계가 크고 무거워지지만 광학계에 요구하는 정밀도는 그대로입니다. 오히려 어려워지지요. 기술과 생산 모두 해결해야할 점이 많습니다.

 

10.jpg

 

우선 NA가 큰 대물 렌즈를 만드는 것 자체가 어렵습니다. 더불어 파면 수차를 NA 0.33보다 줄여야 합니다. 빛의 산란은 더 줄여야 하고, 콘트라스트는 더 높여야 합니다. 

 

 

축소 비율을 높여 패턴의 콘트라스트를 유지


NA 0.55의 투영 광학계에서는 또 다른 큰 변화가 있습니다. 축소 비율의 변화입니다. NA 0.33의 EUV 스캐너는 축소 비율이 4배였습니다. 이것은 마스크(래티클)의 노출 영역이 웨이퍼 노광 영역의 4배가 된다는 말입니다. 웨이퍼를 한 번 스캔하는 노출 영역은 전체 필드 26mm에 스캔 방향 33mm니 이 둘을 곱해 858제곱mm가 됩니다. 마스크의 노출 영역은 104x132mm입니다.

 

이런 노광 영역은 ArF 노광 장치(ArF 스캐너)와 같은 크기며, EUV 노광 장치와 ArF 노광 장치를 적절히 조합해야 반도체 제조 공정 입장에선 편합니다. 즉, ArF 스캐너에 맞춰 설계한 노광 공정 일부에 EUV 스캐너를 쉽게 통합할 수 있도록 크기를 똑같이 맞춥니다.

 

그러나 NA를 0.55로 높인 차세대 EUV 스캐너는 심각한 문제가 생겼습니다. 마스크에 들어와 반사되는 광선의 각도가 커지다보니, 패턴의 컨트라스트가 허용 불가능한 수준까지 떨어집니다. 마스크 재료나 구조를 수정하는 게 가장 간단하지만, 아직은 계획이 없습니다. 

 

그래서 나온 게 비율의 확대입니다. 축소 비율을 8배로 늘리면 마스크의 광선 각도가 작아집니다. 그럼 마스크에서 반사되는 패턴의 컨트라스트가 향상됩니다. 그러나 마스크 크기를 유지하면서 축소 비율을 8배(기존의 2배)로 하면 웨이퍼의 노출 영역이 기존의 1/4로 대폭 줄어듭니다. 노광 영역의 면적을 유지하려면 마스크 면적을 4배로 늘려야 하나, 이러면 마스크 그 자체는 물론이고 조명 광학계도 큰 변화가 필요합니다. 이는 비현실적입니다.

 

11.jpg

 

그래서 나온 절충안이 마스크를 스캔하는 폭을 줄이고, 축소 비율은 기존대로 4배를 유지하는 방법입니다. 스캔 값이 줄어들면서 컨트라스트의 저하가 크지 않습니다. 그 결과 웨이퍼의 노출 영역은 기존의 절반이 됩니다. 너비는 26mm, 스캔 길이는 16.5mm입니다. 지금은 이 하프 필드를 도입해 실용화를 추진합니다. 

 

 

처리량을 크게 높인 차세대 EUV 스캐너의 스펙


노광 영역의 면적이 기존의 절반이 된다는 건 웨이퍼의 노출 횟수가 2배르 늘어난다는 이야기입니다. 한마디로 특정 시간 당 웨이퍼 처리량이 떨어집니다. 이를 유지하려면 High-NA의 EUV 스캐너는 마스크 스테이지의 속도를 4배로, 웨이퍼 스테이지의 속도는 2배로 늘립니다. 또 광원 출력을 향상시켜 NA 0.33인 기존 기종 NXE : 3400의 145~155장에서 185장으로 높이려 합니다. 

 

12.jpg


NA를 0.55로 높인 차세대 EUV 스캐너의 개요. 중첩 오차의 저감, 마스크 스테이지의 고속화, 투영 광학계의 NA와 투과율 향상, 새로운 프레임의 도입, 웨이퍼 스테이지의 고속화, 광원의 출력 향상 등의 개량이 이루어졌습니다. 위 사진은 기존 기종인 NXE : 3400으로, 왼쪽의 사람과 비교하면 크기가 어느 정도인지 파악이 됩니다. 뒤에 나온 그림이 현재 개발 중인 차세대 스캐너의 이미지로, 기존 모델보다 크기가 커졌습니다.

 

13.jpg

 

EUV 광원의 출력 실험 결과. 실험실에선 410W, 현재 양산인 250W의 1.6배 높은 출력이 나왔습니다. 

 

 

절반의 노출 영역에서 높은 처리량을 유지하는 옵션 

 

ASML은 185장/h의 높은 처리량을 전제로 합니다. 하프 필드(26mm × 16.5mm, 429제곱mm)를 초과하지 않는 실리콘 다이를 취급해 목표로 하는 145장/h 보다 높은 처리량을 제공할 수 있습니다.

 

예를 들어 전체 크기의 필드(26mm × 33mm)에 9 개의 실리콘 다이를 넣는다고 가정합시다. 실리콘 다이의 크기는 11.0mm × 8.66mm (95.26제곱mm)입니다. 하프 필드로 나누면 단순히 잡아도 2개의 마스크가 필요하니까 처리량은 25% 떨어집니다. 그럼 138장/h, 지금의 목표인 145장/h보다 떨어집니다.

 

14.jpg

 

그래서 1장의 마스크로 전체 필드의 스캔을 끝냅니다. 1/3 필드를 3번 스캔하면 처리량은 15% 떨어지니 157장/h로 지금 처리량보다 높습니다. 또 실리콘 다이 크기를 조정해 하프 필드에 최적화합니다. 실리콘 다이 크기를 11.55mm × 8.25mm (95.29제곱mm)로 바꿉니다. 그러면 하프 필드에 4개의 실리콘 다이가 들어갑니다. 이 때 처리량 감소는 5%, 그럼 175장/h의 처리량이 나옵니다.

 

 

노광의 핵심, 광학계 개발이 본격화 

 

15.jpg


마지막으로 차세대 High-NA EUV 노광을 실현하는 노광 장치(스캐너)의 개발 거점입니다. 노광 장치 전체의 개발을 담당하는 ASML, 광학계의 개발을 담당하는 칼 자이스 SMT의 두 곳이 있습니다. ASML은 미국 코네티컷 주 윌튼 공장(상위 모듈), 네덜란드 벨트호벤 공장(최종 조립), 미국 캘리포니아주 샌디애고 공장(광원 담당)이 있습니다. 칼 자이스 SMT는 독일 오버코헨 공장(광학 담당)이 있습니다. 모두 새로 건물을 만들거나 기존 건물을 확장하고 있습니다. 

 

16.jpg

 

그 중에서도 가장 눈에 띄는 게 칼 자이스 SMT의 오버코헨 공장입니다. 2017년부터 2018년의 실적을 보면 새로 건물을 올리고, EUV 광학계를 개발하기 위한 거대한 진공 용기(베셀), 수 백 kg에 달하는 렌즈를 올리기 위한 로봇 크레인 등을 반입하고 있습니다. 

 

17.jpg

 

진공 용기의 문을 열고 작업 중. 반사경을 운반할 로봇 크레인.

 

18.jpg

 

칼 자이스 SMT의 공장 건설.

 

19.jpg

 

2017년 10월의 칼 자이스 SMT 공장. 

 

20.jpg

 

 

 

 

 

 

 

 

 

 


TAG •

  • profile
    title: 컴맹칼토로스 2019.02.10 08:05
    재료 한계가 코앞이라는 얘기를 얼핏 들은 것같은데 아직인가 보네요?
  • ?
    노란껌 2019.02.10 18:40
    재료 한계가 코앞이란 말은 40나노 시절부터 나오던 말이라..
    사람들은 항상 방법을 찾아내는 것 같습니다
  • ?
    이계인 2019.02.10 09:46
    Euv도 양산단계에 들어오니 차기장비 개발이 금방되는데 새 광학계는 구멍있는 비대칭구면경 2장이 이용되네요.지금까지는 본적없던 설계가 등장.
  • ?
    마라톤 2019.02.11 15:18
    좋은 정보 감사합니다. ^_^

작성된지 4주일이 지난 글에는 새 코멘트를 달 수 없습니다.


  1. 와사비망고 DP 케이블 분해기

    에일리언웨어 모니터 사용기 3편을 쓰던 중, DP 케이블의 고질병인 화면 깜빡임 문제가 발생하여 교체용 케이블을 몇 개 주문했습니다.   이 문제의 주요 원인 중 하나로 지목받는것은 20번 핀이 살아있어서 생기는 역전류 문제인데요. 현...
    Date2020.03.20 분석 ByAstro Reply9 Views2070 file
    Read More
  2. 샤오미 USB 3.0 허브 XMFXQ01QM 분해

    샤오미 USB 3.0 허브 XMFXQ01QM의 분해 사진입니다. USB 3.0 포트 4개, USB-C 전원 공급 가능, 케이블 길이 0.24m, 크기 89x23.6x18.5mm, 무게 33g. 4가지 기능을 표시. 개봉 허브와 설명서 USB-A 케이블이 달린 허브입니다. 케이스 재질...
    Date2020.03.07 분석 By낄낄 Reply7 Views2520 file
    Read More
  3. AMD 젠 2 CPU 코어의 실제 모습이 공개

    AMD는 국제 반도체 학회 ISSCC(IEEE International Solid-State Circuits Conference) 2020에서 젠 2 코어의 구현에 대해 강연했습니다. Zen 2 : The AMD 7nm Energy-Efficient High-Performance x86-64 Microprocessor Core(T. Singh, e...
    Date2020.03.03 분석 By낄낄 Reply1 Views3647 file
    Read More
  4. ISSCC 2020: AMD 젠 2 프로세서의 CPU 코어와 칩렛 기술

    ISSCC 2020에서 AMD가 시연한 젠 2 프로세서의 액체 질소 쿨링 벤치마크. AMD는 차세대 마이크로 프로세서인 젠2 CPU 코어 기술과 칩렛 기술을 반도체 회로 기술의 국제학회인 ISSCC 2020에서 발표했습니다. 2020년 2월 17일의 발표는 2...
    Date2020.02.21 분석 By낄낄 Reply2 Views3177 file
    Read More
  5. 현대 PC에서 DOS 부팅 USB를 통해 MS-DOS 사용하기

    제가 쓰는 노트북은 Vaio P로, 뛰어난 디자인과 완성도 but 그지같은 성능으로 인해 용도가 지나치게 한정된 제품이죠.    일반적으로 '컴퓨터의 성능' 을 일상생활 속에서 평가한다면, 평가에 대한 기준은 컴퓨터 프로세서의 절대적인 연...
    Date2020.02.03 분석 By우즈 Reply21 Views2167 file
    Read More
  6. UGREEN USB-C 멀티포트 어댑터 CM260 분해

    UGREEN USB-C 멀티포트 어댑터 CM260의 분해 사진입니다. UGREEN의 멀티포트 어댑터를 한국에서 쓰는 분들이 은근히 많아서 하나 소개해 봅니다. 뒷면의 제품 정보. 포장. 보증서와 설명서. 샌딩 처리된 케이스로 지문이 잘 묻지 않습니...
    Date2020.01.31 분석 By낄낄 Reply11 Views2232 file
    Read More
  7. No Image

    메모리의 발전과 컴퓨팅의 미래

    요 아래 나온 인텔의 MRAM 기술개발 소식( https://gigglehd.com/gg/6517977 )과 같이, 현재 대부분의 반도체 회사들은 계속해서 PRAM, MRAM등의 차세대 매모리를 개발하고 있습니다. 하지만 일반 소비자 입장에서는 지금 당장 사용하질 ...
    Date2020.01.27 분석 Bytitle: 흑우Moria Reply26 Views3333
    Read More
  8. No Image

    EVGA의 RTX 2060 KO, RTX 2070 SUPER과 비슷한 성능?

    유튜버인 Gamers Nexus에 따르면 EVGA RTX 2060에 들어간 칩셋이 TU104라서 RTX 2070 Super과 비슷한 성능을 낸다고 하는군요
    Date2020.01.24 분석 Bytitle: 민트초코라데온HD6950 Reply4 Views1235
    Read More
  9. Ryzen 7 4800U의 내장 그래픽, MX250보다 강력?

    (단순 중국어 번역문입니다)   차세대 Ryzen 4000U 시리즈 프로세서가 Zen2 아키텍처의 CPU 코어를 예상대로 사용했지만 GPU는 여전히 Vega 아키텍처에 다소 실망했습니다. 또한 Vega 10에서 Vega 8로 축소되어 2 세트의 컴퓨팅 장치를 거...
    Date2020.01.15 분석 Bytitle: 민트초코라데온HD6950 Reply19 Views9056 file
    Read More
  10. 다들 아시겠지만 축교환 기계식 키보드 주의점

    요즘 축교환 키보드가 흔합니다. 3년 전에는 드물었는데 지금은 개나소나 달고 나오죠.   보통은 이렇게 소캣이 ㅇ형태입니다. 이 경우 오테뮤 말고는 호환이 거의 안 됩니다. 오테뮤 축이 유난히 핀이 굵더군요.  반면 -형태의 소캣은 호...
    Date2020.01.11 분석 Bytitle: 부장님호무라 Reply17 Views7189 file
    Read More
  11. 2019년 SSD 성능 순위

    (단순 중국어 번역문입니다)   1 월 9 일 뉴스, Master Lu는 2019 년 하드 드라이브 성능 순위를 발표했으며, 삼성 PM981은 "가장 강력한 하드 드라이브"를, Kingston SA400S37 240GB는 "가장 인기있는 하드 드라이브"를 획득했습니다. 성...
    Date2020.01.10 분석 Bytitle: 민트초코라데온HD6950 Reply19 Views6046 file
    Read More
  12. 2019년 RAM 성능 순위

    (단순 중국어 번역문입니다)   Master Lu는 연간 PC 프로세서 목록 외에도 2019 년 PC 메모리 순위를 오늘 발표했습니다. 목록에서 8GB는 여전히 PC 플레이어의 첫 번째 선택입니다. 그중 Zhiqi DDR4 4266MHz 8GB는 올해 가장 강력한 메모...
    Date2020.01.10 분석 Bytitle: 민트초코라데온HD6950 Reply9 Views3155 file
    Read More
  13. 2019년 CPU 성능 순위

    (단순 중국어 번역문입니다)   1 월 8 일, 마스터 루는 2019 년 PC 프로세서 순위를 발표했습니다. 이 목록은 2018 년 연례 성능 챔피언십에 이어 32 개의 코어와 64 개의 스레드를 갖춘 AMD Ryzen Threadripper 2990WX가 다시 한 번 PC ...
    Date2020.01.10 분석 Bytitle: 민트초코라데온HD6950 Reply3 Views8222 file
    Read More
  14. 2019년 그래픽 카드 성능 순위

    (단순 중국어 번역문입니다)   이 목록은 NVIDIA TITAN RTX가 성공적으로 우승했으며 상위 5 개는 모두 N 카드이며 A 카드는 상위 5 개가 아닙니다.     마스터 Lu는 RTX 2080 Ti의 고급 버전으로서 NVIDIA TITAN RTX는 동일한 TU102 코어...
    Date2020.01.10 분석 Bytitle: 민트초코라데온HD6950 Reply8 Views2734 file
    Read More
  15. 스팀에서의 AMD 그래픽 카드 vs 엔비디아 그래픽 카드 점유율 비교 +a

    (단순 중국어 번역문입니다)   Steam은 사용자의 하드웨어 및 소프트웨어 데이터에 대한 월간 설문 조사를 실시하지만 설문 조사는 사용자의 의지를 기반으로하지만 Steam 플레이어의 전체 하드웨어 및 소프트웨어 상황을 반영 할 수는 없...
    Date2020.01.07 분석 Bytitle: 민트초코라데온HD6950 Reply22 Views3824 file
    Read More
  16. 애플 맥 프로 2019 분해 사진

    애플 맥 프로 2019의 분해 사진입니다. 인텔 8코어 제온 프로세서, 부스트 클럭 4GHz, 24.5MB L3 캐시 8GB DDR4-2666MHz ECC 메모리 4개 라데온 프로 580X 8GB GDDR5 256GB PCIe 플래시 스토리지 802.11ac WiFi, 블루투스 5.0 미국 텍사...
    Date2019.12.17 분석 By낄낄 Reply27 Views5907 file
    Read More
  17. VLSI: 무어의 법칙 3단계. 멀티 다이로 구성된 모듈화

    작은 칩을 모아 큰 칩을 만든다 무어의 법칙은 3단계가 있습니다. 여러 다이로 구성된 칩을 만드는 모듈화, 칩 설계의 완전 자동화까지 앞으로 반도체 칩이 나아갈 방향은 이 3단계에서 이루어진다고 예측합니다. 지금까지는 반도체 칩의 ...
    Date2019.10.07 분석 By낄낄 Reply10 Views2555 file
    Read More
  18. No Image

    SSD 데이터 복구의 어려움. 스마트폰은 복구가 거의 불가능

    일본 데이터 복구 협회가 진행한 데이터 복구 활동 발표회의 내용을 간추렸습니다. 현재 SSD의 출하량은 크게 늘어나고 있습니다. 2015년에는 전세계 8천만대도 팔리지 않았으나 2018년에는 1억 6715만대로 늘어났습니다. 하드디스크는 4...
    Date2019.09.22 분석 By낄낄 Reply18 Views5234
    Read More
  19. 타오바오 NAS는 왜 저렴하게 판매되는가?

    아무리 생각해도 이렇게 저렴할 이유가 없는데, 가진 스펙에 비해 타오바오 NAS는 너무 저렴하게 판매되고 있었습니다. 중고라고 쳐도, 이 많은 물량은 어디에서 온 것일까요? 그래서 조금 더 파보니 가상화폐 채굴에 사용되었다가 나온 ...
    Date2019.08.31 분석 Bytitle: 흑우Moria Reply41 Views35559 file
    Read More
  20. 부동 소수점 연산. 단정밀도와 배정밀도의 차이

    계산식의 자리수를 억제. 부동 소수점 컴퓨터는 숫자를 연산할 때 정수 연산과 소수 연산의 2가지로 나눠 구현합니다. 이건 '처리해야 하는 숫자의 자리수'가 매번 다르기 때문입니다. 정수는 보통 10자리 정도면 충분합니다. 대...
    Date2019.08.12 분석 By낄낄 Reply15 Views13322 file
    Read More
목록
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 Next
/ 11

최근 코멘트 30개
설아
08:08
툴라
07:55
마라톤
07:55
마라톤
07:54
툴라
07:53
툴라
07:49
GPT
07:49
GPT
07:47
툴라
07:37
360Ghz
07:27
소스케
07:15
GENESIS
06:52
MUGEN
06:52
포인트 팡팡!
06:50
GENESIS
06:49
보문산타이거
05:06
보문산타이거
05:04
슬렌네터
04:49
라데니안
03:40
포인트 팡팡!
03:16
Lynen
03:16
유카
03:08
린네
02:29
린네
02:24
이수용
02:22
카에데
02:21
별밤전원주택
02:15
린네
02:14
별밤전원주택
02:13
카에데
02:10

더함
MSI 코리아
한미마이크로닉스
AMD

공지사항        사이트 약관        개인정보취급방침       신고와 건의


기글하드웨어는 2006년 6월 28일에 개설된 컴퓨터, 하드웨어, 모바일, 스마트폰, 게임, 소프트웨어, 디지털 카메라 관련 뉴스와 정보, 사용기를 공유하는 커뮤니티 사이트입니다.
개인 정보 보호, 개인 및 단체의 권리 침해, 사이트 운영, 관리, 제휴와 광고 관련 문의는 이메일로 보내주세요. 관리자 이메일

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소